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Abstract. Optical metasurfaces are endowed with unparallel flexibility to manipulate the light field with a
subwavelength spatial resolution. Coupling metasurfaces to materials with strong optical nonlinearity may
allow ultrafast spatiotemporal light field modulation. However, most metasurfaces demonstrated thus far
are linear devices. Here, we experimentally demonstrate simultaneous spatiotemporal laser mode control
using a single-layer plasmonic metasurface strongly coupled to an epsilon-near-zero (ENZ) material within a
fiber laser cavity. While the geometric phase of the metasurface is utilized to convert the laser’s transverse
mode from a Gaussian beam to a vortex beam carrying orbital angular momentum, the giant nonlinear
saturable absorption of the ENZ material enables pulsed laser generation via the Q-switching process. The
direct integration of a spatiotemporal metasurface in a laser cavity may pave the way for the development of
miniaturized laser sources with tailored spatial and temporal profiles, which can be useful for numerous
applications, such as superresolution imaging, high-density optical storage, and three-dimensional laser
lithography.
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1 Introduction
The optical metasurface is an emerging class of diffractive
optical elements composed of an array of dielectric or metallic
nano-antennas of spatially varying geometries. It is extremely
versatile for maneuvering the amplitude, phase, or polarization
of incident light with a subwavelength spatial resolution.1–4

Over the last decade, metasurfaces have been proposed for
various applications ranging from imaging5,6 and holography7–9

to the generation of complex vectorial light field patterns.10–14

However, most optical metasurfaces demonstrated to date are
isolated optical elements that work with external light sources.
Recent work indicates that the incorporation of metasurface in
a solid-state or fiber laser cavity may enable coherent light
emission with tailored spatial mode profile, such as vortex laser
beam carrying orbital angular momentum (OAM), in a compact
form factor.15–17 The integration of metasurface into a laser

cavity may pave the way for the development of the next gen-
eration of miniaturized laser sources with a tailorable structured
light field.18

However, despite their versatility to spatially manipulate the
light field, most metasurfaces only possess a time-invariant
response postfabrication. Recently, there has been a growing
interest in the community to develop nonlinear metasurfaces for
spatiotemporal light-field modulation.19 Introducing temporal
modulation to metasurfaces may unlock a much wider range of
applications. For instance, all-optical switching of metasurfaces
may be further utilized for saturable absorption20 and temporal
laser pulse shaping21 by leveraging the optical nonlinearity of
the composite material. Nonetheless, regardless of the enhance-
ment of nonlinear light–matter interaction in metasurfaces, most
materials, either dielectric or metallic, have a relatively limited
nonlinear optical response on their own, resulting in a small
modulation depth and a large pump fluence requirement of non-
linear metasurfaces.

One solution to the metasurface’s limited nonlinearity is
through near-field coupling to a medium with extremely large
optical nonlinearity. Epsilon-near-zero (ENZ) materials, an
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emerging class of materials with vanishing permittivity, have
drawn much attention in recent years.22–25 An ENZ response
may be found in various material systems, including polar
dielectrics,26 doped semiconductors,27 metal nitrides,28 and con-
ductive metal oxides.29 For instance, indium tin oxide (ITO),
a conductive metal oxide widely used as transparent electrodes
in solar cells and consumer electronics, typically has its real part
of permittivity crossing zero in the near-infrared regime.30 An
ENZ material, with its linear refractive index n0 also approach-
ing zero, is endowed with a large nonlinear refractive index n2
and a large nonlinear absorption coefficient β following the
relation,31,32

n2 ¼
3

4Reðn0Þn0ε0c
χð3Þ; (1)

β ¼ 2ω

c
Imðn2Þ; (2)

where ε0 is the vacuum permittivity, c is the speed of light in
vacuum, ω is the angular frequency of light, and χð3Þ is the
material’s third-order nonlinear susceptibility. The giant optical
nonlinearity of ENZ materials has been exploited for second-
and third-harmonic generation,33–35 high-harmonic generation,36

terahertz wave generation,37,38 all-optical switching,39–42 and
temporal pulse shaping.43–46 Moreover, it has been shown that
the strong coupling between a plasmonic metasurface and a thin
film made of an ENZ material can result in a further enhanced
and tailorable nonlinear optical response.47,48 The synergy be-
tween a spatially inhomogeneous metasurface and an ENZ
material may enable simultaneous spatiotemporal light control
with unprecedented flexibility.

Here, we experimentally demonstrate the spatiotemporal
light-field modulation in a fiber laser cavity using a single-layer
plasmonic metasurface strongly coupled to an ENZ material.

The geometric phase of a metasurface made of spatially inho-
mogeneous anisotropic metallic nano-antennas is utilized to
tailor the transverse mode of the output laser beam. Furthermore,
the giant nonlinear saturable absorption of the coupled system
allows pulsed laser generation via the Q-switching process. As a
prototype, we realize microsecond-pulsed vortex lasers with
varying topological charges, as schematically illustrated in Fig. 1.

2 Results

2.1 Intracavity Spatial Modulation

First, to implement the spatial modulation of the transverse laser
mode using a metasurface directly integrated into a fiber laser
cavity, we build an optical setup, as schematically shown in
Fig. 2(a). The light coupled out of the fiber collimator is ellip-
tically polarized. We use a polarizer and a quarter-wave plate
to convert it to circular polarization. Here, we utilize the geo-
metric phase of anisotropic metallic nano-antennas for the phase
manipulation.49,50 For a nano-antenna with its long axis oriented
at an angle φwith respect to the x axis, as illustrated in Fig. 2(b),
when a circularly polarized plane wave impinges on the meta-
surface, the transmitted cross-polarized light carries an addi-
tional phase of 2φ. In contrast, the wavefront of the copolarized
light remains unperturbed. As a result, the cross-polarized light
can be converted to the desired spatial mode, such as vortex
beams carrying OAM with varying topological charges, by
judiciously tailoring the metasurface’s phase profile. Another
quarter-wave plate is used to convert the mode-converted beam
and Gaussian beam to orthogonal linearly polarized states. The
mode-converted beam is then coupled out of the laser cavity by
a polarization beam splitter (PBS), while the Gaussian beam is
coupled back to the fiber by the fiber collimator for further
amplification. The out-coupling efficiency can be engineered by
tailoring the metasurface’s polarization conversion efficiency.

Intracavity spatiotemporal metasurface 

PBS

Single-mode fiberPulsed vortex beam

Gain fiber

Pulsed Gaussian beam

Fig. 1 Schematic illustration of the intracavity spatiotemporal modulation using the geometric
phase metasurface strongly coupled to an epsilon-near-zero material. The metasurface is
incorporated in a unidirectional ring fiber laser cavity. The metasurface converts a portion of the
input Gaussian beam into a vortex beam, which is coupled out from the laser cavity through a
polarization beam splitter (PBS). The remaining Gaussian beam is further amplified in the following
round trip. The giant nonlinear saturable absorption of the strongly coupled system further allows
temporal laser pulse compression via the Q-switching process.
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The designed polarization conversion efficiency of the proto-
type metasurface, composed of gold nano-antennas on an ITO
glass substrate, is merely 0.37%. Despite a relatively low polari-
zation conversion efficiency, the remaining copolarized light
experiences further stimulated amplification in the following
round trip. On the contrary, most metasurfaces that operate out-
side of the laser cavity lack a mechanism for iteratively improv-
ing their modal conversion efficiency.

As a prototype, we experimentally demonstrate vortex fiber
laser carrying OAM with topological charges l ¼ 1 and l ¼ 2,
respectively, by incorporating the geometric phase metasurfaces
in the laser cavity. The required spatial phase distributions of
the cross-polarized light with l ¼ 1 and l ¼ 2 are illustrated in
Figs. 2(c) and 2(d), respectively. The metasurfaces are fabricated
by a standard single-step electron-beam lithography process,
with the scanning electron microscope (SEM) images shown in
Figs. 2(e) and 2(f), respectively.

The transverse mode profiles of the vortex laser beam with
l ¼ 1 and 2 directly coupled out from the metasurface-inte-
grated cavity are illustrated in Figs. 2(g) and 2(h), respectively,
showing a characteristic intensity minimum at the beam center,

which is a consequence of the phase singularity resulting from
the corkscrew beam shape. To further confirm the topological
charges of the vortex beams, we interfere each vortex beam with
a Gaussian beam, with the interference patterns shown in
Figs. 2(i) and 2(j), respectively (see Fig. S1 in the Supplementary
Material for details). The dislocated fringe numbers in the inter-
ference patterns indicate the topological charges, which are con-
sistent with our design.

2.2 Intracavity Temporal Modulation

Next, we investigate the nonlinear saturable absorption property
when coupling the metasurface with an ENZ layer and further
demonstrate temporal laser pulse shaping. Figure 3(a) shows the
schematic and SEM image of a metasurface strongly coupled
to an ENZ thin film made of ITO. Here, we modify the gold
nano-antenna to a circular shape to rule out the competing
polarization-dependent nonlinear optical effects, such as nonlin-
ear polarization rotation,51–53 which could also result in temporal
pulse shaping in a laser cavity.
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Fig. 2 Intracavity spatial modulation. (a) Schematic illustration of the optical setup in free space for
the vortex beam generation using the geometric phase metasurface directly from the laser cavity.
Col, collimator; LP, linear polarizer; QWP, quarter-wave plate; PBS, polarization beam splitter;
CCD, charge-coupled device. (b) Schematic of the unit cell of the geometric phase metasurface.
(c), (d) Spatial phase distributions required for the generation of vortex beam with topological
charge l ¼ 1 (c) and l ¼ 2 (d), respectively. (e), (f) SEM images at the center of the geometric
phase metasurface with topological charge l ¼ 1 (e) and l ¼ 2 (f), respectively. (g), (h) Transverse
mode profiles of the vortex beam with topological charge l ¼ 1 (g) and l ¼ 2 (h), respectively.
(i), (j) Interference patterns between a Gaussian beam and a vortex beam with topological charge
l ¼ 1 (i) and l ¼ 2 (j), respectively.
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Fig. 3 Intracavity temporal modulation. (a) Schematic (upper panel) and SEM image (lower panel)
of the circular gold nano-antenna coupled to an ITO film. The geometric parameters are:
P ¼ 760 nm, R ¼ 200 nm, t1 ¼ 40 nm, and t2 ¼ 20 nm. (b) Real (red) and imaginary (blue) parts
of the permittivity of the ITO film. Inset: schematic of the ITO film on glass substrate used in the
spectroscopic ellipsometry measurement. (c) Simulated transmittance of the coupled system as
a function of the ENZ wavelength of the ITO film. The static ENZ wavelength of the ITO film and
the laser operation wavelength are indicated by the white and gray dashed lines, respectively.
(d) Measured (red) and simulated (blue) linear transmittance of the coupled system. The gray
region denotes the wavelength range where experimental results are not achievable due to
the low quantum efficiency of the spectrometer. (e) Simulated electric field intensity distribution
at the wavelength of 1565 nm. (f) Measured (dots) and fitted (line) pump fluence-dependent
transmittance of the ENZ-metasurface at the wavelength of 1565 nm. The fitting parameters
are as follows: Isat ¼ 0.52 GW∕cm2, A ¼ 7.2%, and Ans ¼ 34.5%. Inset: schematics of ultrafast
electron dynamics in the ITO film with three steps, including photo-excitation, hot-electron redis-
tribution, and relaxation. (g) Schematic of the Q-switching measurement setup. LD, laser diode;
WDM, 980 nm/1550 nm wavelength division multiplexer; EDF, Er-doped fiber; ISO, optical iso-
lator; PC, polarization controller; Col, collimator; OC, output coupler. (h) OutputQ-switched pulses
trace with the pump power of 39 mW. (i) Averaged optical spectrum of the output pulses with
a peak wavelength of 1566 nm.
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The ITO thin film is grown by magnetron sputtering, with its
complex linear permittivity measured via spectroscopic ellips-
ometry, as shown in Fig. 3(b). The real part of its permittivity
crosses zero at 1558 nm. The resonance wavelength of the gold
nano-antenna is tuned to coincide with the ENZ wavelength of
the ITO film. Figure 3(c) shows the simulated linear transmit-
tance spectrum of the coupled system as a function of the ENZ
wavelength of the ITO film at normal incidence, with a clear
anti-crossing line shape indicating the strong coupling between
the gold nano-antenna and the ITO film. The experimentally
measured transmittance, as shown in Fig. 3(d), is in agreement
with the simulation. The slight discrepancy is attributed to
the difference of the geometry parameters of the simulated
and fabricated metasurfaces as well as the inaccuracy of the
fitted refractive index of the ITO film (see Fig. S2 in the
Supplementary Material for details).

The simulated near-field distribution of the coupled system
at a wavelength of 1565 nm is depicted in Fig. 3(e), showing
over 2 orders of magnitude of enhancement of the electric field
intensity within the ITO film. Despite the large third-order
optical nonlinearity of a bare ENZ film that is only accessible
at an oblique angle of incidence, coupling the ENZ film with the
gold nano-antenna can further boost its nonlinearity at normal
incidence.47

To evaluate the nonlinear saturable absorption property of the
strongly coupled system, as required for the temporal laser pulse
shaping, we measure its transmittance T as a function of the
pump fluence I, with the result shown in Fig. 3(f). By fitting
the experimental data with the following equation:54

TðIÞ ¼ 1 − A expð−I∕IsatÞ − Ans; (3)

where Isat is the saturable fluence, A is the modulation depth,
and Ans is the unsaturable loss, it can be determined that Isat ¼
0.52 GW∕cm2 for the metasurface strongly coupled to the
ENZ layer, which is much lower than that of a bare ITO film30

(see Fig. S3, Fig. S5, and Table S1 in the Supplementary
Material for details).

The underlying physical mechanism for the observed satu-
rable absorption in the ITO film is graphically depicted in the
inset of Fig. 3(f). Following the subbandgap photo-excitation,
the electrons in ITO’s conduction band quickly thermalize into
a hot Fermi distribution and relax back to the band minimum.
Owing to the nonparabolicity of ITO’s conduction band, its
effective electron mass meff increases upon photo-excitation,
leading to a redshift of ITO’s ENZ wavelength and a transmit-
tance change of the strongly coupled system.39,40,55 An additional
advantage of the strongly coupled system is that it offers the
flexibility to engineer the sign of the nonlinear refractive index
by engineering either the antenna resonance or the ENZ wave-
length, allowing the system to exhibit saturable or reverse-satu-
rable absorption, depending on the application requirements.47

To demonstrate temporal laser pulse shaping, we build an
experimental setup, as schematically illustrated in Fig. 3(g).
The fiber laser operates in the continuous-wave mode without
the metasurface. After inserting the metasurface, a stable
Q-switched pulse train is observed. The full width at half-maxi-
mum (FWHM) duration of the pulse is measured to be 11.8 μs
with a pump power of 39 mW [Fig. 3(h)], and the peak wave-
length is at 1566 nm [Fig. 3(i)]. The modulation with a period
of 1.5 nm in the measured optical spectrum is a result of the
Fabry–Perot interference in the ∼530-μm-thick glass substrate

that supports the metasurface device. For the Q-switched pulse
generation, a higher pump power should activate the saturable
absorption of the metasurface in less time, resulting in a higher
pulse repetition rate. As the pump power increases, the exper-
imentally measured pulse repetition rate increases, and the pulse
duration narrows (see Fig. S7 in the Supplementary Material for
details). We also investigate the slope efficiency of the laser
cavity. After inserting the metasurface, the slope efficiency de-
creases from 6.9% to 3.8%, which is attributed to the loss in-
duced by the metasurface. (see Fig. S8 in the Supplementary
Material for details).

2.3 Intracavity Spatiotemporal Modulation

Combining transverse laser mode control and temporal pulse
compression, we finally demonstrate pulsed vortex laser beam
generation using a single spatiotemporal metasurface incorpo-
rated in the laser cavity. Here, the metasurface utilized is
identical to the one presented in Fig. 2. Its nonlinear saturable
fluence Isat is measured to be 0.41 GW∕cm2 (see Figs. S4–S6
and Table S2 in the Supplementary Material for details).

To generate pulsed vortex laser beams, we increase the pump
fluence by moving the metasurfaces closer to the focus of the
lens. The measured transverse mode profiles of the vortex laser
beam with l ¼ 1 and l ¼ 2 directly coupled out from the meta-
surface-integrated cavity are shown in Figs. 4(a) and 4(b), re-
spectively. The decrease in the mode purity may be attributed
to the decreased spot size of the incident light and the resultant
distorted modulated wavefront. Furthermore, the alignment re-
quirements for the light path become more stringent as the laser
spot size decreases. The measured interference patterns between
the vortex beams and the Gaussian beams, as depicted in
Figs. 4(c) and 4(d), respectively, further confirm that the topologi-
cal charges of the generated vortex beams agree with the theo-
retical prediction. With a pump power of 51 mW, the FWHM
duration of the Q-switched vortex pulse is 14.3 μs [Fig. 4(e)],
and the peak wavelength is at 1578 nm [Fig. 4(f)]. The pulse
duration and repetition rate can be controlled by adjusting the
pump power (see Fig. S9 in the Supplementary Material for
details). The slope efficiencies of the laser cavity for Gaussian
beam generation with and without metasurface are 5.4% and
6.7%, respectively. The slope efficiency of the Q-switched vortex
pulse from the PBS is 0.32%, as a result of the relatively low
polarization conversion efficiency of the geometric phase meta-
surface (see Fig. S10 in the Supplementary Material for details).

3 Conclusion
We have demonstrated that a single optical element, composed
of a metasurface strongly coupled to an ENZ material, can be
utilized to modulate light spatiotemporally within the laser
cavity. As a prototype, the pulsed vortex lasers with variable
topological charges have been generated.

Looking forward, we envision that one may combine the
metasurface’s versatility for spatial light-field manipulation
with its giant and tailorable nonlinearity for generating laser
beams with arbitrary spatial and temporal profiles.56 Since
ENZ materials typically have a response time on the order of
hundreds of femtoseconds,30,39 it is also possible to generate
femtosecond vortex pulses via the mode-locking process with
further suppressed cavity loss and increased pump power.57

To further reduce the cavity loss and increase the damage thresh-
old of the metasurface, high-index dielectric antennas may be
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used in place of metal.58 Other nonlinear media, such as semi-
conductor saturable absorber mirrors, could also be incorporated
into the spatiotemporal metasurface design to improve their
mode-locking capabilities and broaden their operation wave-
length range.59 Furthermore, metasurfaces can be integrated on
the fiber end face to avoid the coupling loss between fiber and
free space and to reduce the required pump fluence. Our method
may break ground for developing the next generation of minia-
turized pulsed laser sources with designer transverse mode pro-
files, which could be used in various applications,60 such as light
trapping,61 optical storage,62 superresolution imaging,63 and 3D
laser lithography.64

Note: See Supplementary Material for methods for meta-
surfaces fabrication and ITO thin-film growth, linear characteris-
tics of the ITO film, nonlinear optical effect contribution analysis
and polarization-selective effect analysis of the geometric phase
metasurfaces, which includes Fig. S11 and Refs. 65 and 66.
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vortex pulses with topological charge l ¼ 1 (a) and l ¼ 2 (b), respectively. (c), (d) Interference
patterns between a pulsed Gaussian beam and a pulsed vortex beam with topological charge
l ¼ 1 (c) and l ¼ 2 (d), respectively. (e) Q-switched pulse trace of the vortex beam (l ¼ 2) with
a pump power of 51 mW. The FWHM pulse duration is 14.3 μs. (f) Averaged optical spectrum
of the pulsed vortex beam (l ¼ 2) with a peak wavelength of 1578 nm.
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